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1 Introduction

This document explains in detail the formulations of two turbulent schemes in (ICOsahedral Nonhydro-
static) ICON models: Total turbulent energy (TTE) scheme in ICON-AES and 3D Smagorinsky turbulent
scheme in ICON-LEM. Their locations in the model codes are also provided.

2 ICON-AES: total turbulent energy (TTE) scheme

Total turbulent energy turbulent scheme was implemented into ICON-AES by Felix Pithan and Thorsten
Mauritsen in 2016. This chapter will provide description of TTE scheme based on the codes and Louis (1979),
Brinkop and Roeckner (1995), Mauritsen et al. (2007), Zilitinkevich et al. (2007), Angevine et al. (2010),
Wan (2011), and Pithan (2014). These references will be referred as L79, BR95, M07, Z07, A10, W11, and
P14 for the convenience.

2.1 Atmosphere process

Detail descriptions of exchange coefficient in atmosphere (from k = 1 to k = nlev) are provided in this
section, where nlev is the lowest model level.
All the equations in section 2.1 are in subroutine atm exchange coeff of mo turbulence diag.f90

2.1.1 Turbulent energies

The TTE scheme prognoses total turbulent energy (E = Ek + Ep) rather than turbulent kinetic energy
unlike other turbulent prognostic schemes, where Ek is the turbulent kinetic energy and Ep is the turbulent
potential energy. The prognostic equation is given by E is given by

DE

Dt
= τ · S − γ −

∂FE

∂z
+


0 for N2 ≥ 0

2
g

θ
w′θ′ for N2 < 0

, (2.1)

from M07 Eq. (4), where τ is the turbulent stress, S is the wind shear and N is the Brunt-Väisälä frequency,

γ =
Cε

l
E3/2 is the dissipation rate, Cε is empirical constant, FE = −|S|l2

∂E

∂z
is the turbulent flux of total

turbulent energy, and l is length scale (mixing length). E without vertical flux is computed using operator
splitting method as

∂E

∂t
=

(
∂E

∂t

)
local

+

(
∂E

∂t

)
diffusion

, (2.2)

where the first term of r.h.s is local process and computed first, and the second term of r.h.s is vertical
diffusion process and will be computed using VDIFF module like momentum and dry static. Local process
term is given by (

∂E

∂t

)
local

= B
√
E − C(

√
E)3 (2.3)

where B and C are

i) in stable case (Ri ≥ 0):
B = Km S2 (2.4)

ii) in unstable case (Ri < 0):
B = Km S2 − 2Kh N

2 (2.5)
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and

C =
Cε

l
. (2.6)

Convert Eq. (2.3) into an equation of
√
E

D
√
E

Dt
=
B
2
−
C
2
(
√
E)2, (2.7)

and discretize using implicit time stepping

√
E(∗) −

√
E(t)

∆t
=
B
2
−
C
2
(
√
E(∗))2. (2.8)

Finally, E(∗) can be obtained by solving a quadrature equation

√
E(∗) =

− 1 +

√
1 + C ∆t

[
B∆t+ 2

√
E(t)

]
C ∆t

(2.9)

from BR95 Eqs. (A3-A10) and W11 section 5.3, where E(∗) is E at t + ∆t, after local process, Km and
Kh exchange coefficients for momentum and heat. Then, E is updated once more to get E(t+∆t) by solving
vertical diffusion process in VDIFF module like momentum and dry static energy in the TTE scheme.

Once total turbulent energy is updated, Ek and Ep are derived from E(∗). The Ek and Ep can be ob-
tained from that E = Ek + Ep as follows

i) in stable case (Ri ≥ 0):

Ek = E(t)

[
1 +

Ri

3Ri+ Pr0

]−1

, (2.10)

and

Ep = Ek

[
Ri

3Ri+ Pr0

]
, (2.11)

ii) in unstable case (Ri < 0):

Ek = E(t)

[
1 +

Ri

2Ri− Pr0

]−1

, (2.12)

and

Ep = Ek

[
Ri

2Ri− Pr0

]
, (2.13)

based on the relationship

Ep
Ek

=


Ri

3 ·Ri+ Pr0
for Ri ≥ 0

Ri

2 ·Ri− Pr0
for Ri < 0,

(2.14)

from P14 Eq. (5.9) and A10 Eq. (A10), where Ri is moist Richardson number, Pr0 is turbulent Prandtl
number.

2.1.2 Exchange coefficient

The Km, exchange coefficients for momentum, and Kh, exchange coefficients for heat are derived from
different formulas. Which formula will be used is determined by the height where K is computed and con-
vective boundary layer height (hd). The Km and Kh are calculated as

i) z > hd:

Km =
f2
τE

2
k

CεEk
√
E/l − βfθ

√
Ekσ2

θ

, (2.15)

and
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Kh =
2f2
θEkl

Cφ
√
E
, (2.16)

from M07 Eqs. (B1) and (B2),

ii) z ≤ hd/2):

Km =
f2
τ0

Cε
lc
√
Ek, (2.17)

and

Kh = Pr−1
0 Km, (2.18)

from A10 Eqs. (A21) and (A22),

iii) hd/2 < z ≤ hd):

Km = Max

[
f2
τE

2
k

CεEk
√
E/l − βfθ

√
Ekσ2

θ

,
f2
τ0

Cε
lc
√
Ek

]
, (2.19)

and

Kh = Max

[
2f2
θEkl

Cφ
√
E
, Pr−1

0 Km

]
, (2.20)

if in unstable case (Ri < 0), there is one more procedure as

Km = Km

1−
2cRi

1 + 3c2l2
[(

∆z
z + 1

)1/3 − 1
]3/2 [ √

−Ri
(∆z)3/2

√
z

]
 , (2.21)

and

Kh = Kh

1−
3cRi

1 + 3c2l2
[(

∆z
z + 1

)1/3 − 1
]3/2 [ √

−Ri
(∆z)3/2

√
z

]
 , (2.22)

from ECHAM6 report Eqs. (2.165) and (2.166), where hd is defined as the first model level whose dry static
energy exceeds that of the lowest model level, fτ (fθ) is nondimensional stress (heat flux), Cφ (= Cε) is
empirical constant related to the turbulence dissipation, lc is convective length scale in convective condition,

β is g/θv, σ
2
θ = 2Ep

|N2|
β2 is potential temperature variation, Pr0 = Km/Kh = f2

τ /2f
2
θ is turbulent Prandtl

number, and c = 5.0.

2.1.3 Moist Richardson number

Ri, moist Richardson number can be defined as

N2 =
g

θv

A∆θL + θD∆qt

∆z
(2.23)

S2 =
(∆U)2 + (∆V )2

(∆z)2
(2.24)

Ri =
N2

S2
(2.25)

from BR95 Eq. (11) and M07 Eq. (5), where θL is cloud water potential temperature, and qt is total water
content, last two variables are conserved under phase transitions and are defined as

θL = θ − Lv
cp

θ

T
m, (2.26)

qt = q +m, (2.27)

from BR95 Eqs. (6) and (7), where T is temperature, θ is potential temperature, q is specific humidity and
m is cloud water specific humidity (cloud liquid water + cloud ice specific humidity). The coefficients A and
D are defined as

A = CfAs + (1− Cf )Au, D = CfDs + (1− Cf )Du, (2.28)

where Cf is cloud cover faction, As, Au, Ds, and Du are defined as
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As = 1 + 0.61qt −

[
L

cpT
(1 + 0.61qt)− 1.622

] 0.622
L

RdT
qs

1 + 0.622
L

RdcpT 2
qs

, (2.29)

Ds = As
L

cpT
− 1, (2.30)

Au = 1 + 0.61q, (2.31)

Du = 0.61, (2.32)

from BR95 Eqs. (8-10), where qs is saturated specific himidity.

2.1.4 Nondimensional stress and heat flux

Nondimensional stress (fτ ) and heat flux (fθ) are defined as

i) in stable case (Ri ≥ 0):

fτ =
|τ |
Ek

= fτ0

(
0.25 +

0.75

1 + 4Ri

)
, (2.33)

and

fθ =
wθ√
Ekσ2

θ

= −
fθ0

1 + 4Ri
, (2.34)

from M07 Eq. (6) and Mauritsen and Svensson (2007),

ii) in unstable case (Ri < 0):
fτ = fτ0, (2.35)

and

fθ = fθ0, (2.36)

where fτ0 = 0.17, fθ0 = −

√
f2
τ0

2Pr0
= −0.1202081528, and Pr0 = 1.0. (In M07, Pr0 = 0.69 and thus

fθ0 = −0.145.)

2.1.5 Length scale

The l, length scale (mixing length) is derived as

1

l
=

1

kz
+

f

Cf
√
fτEk

+
N

CN
√
fτEk

, (2.37)

from M07 Eq. (8) and A10 Eq. (A11), where k = 0.4 is von Kármán constant, f is the Coriolis parameter,
Cf = 0.185 and CN = 2.0.

2.1.6 Convective length scale

The lc, convective length scale is used to define the length scale in convective boundary layer. The lc is
computed as

1

lc
=

1

kz
+

f

Cf
√
fτEk

+
3

k(hd − z)
for z < hd, (2.38)

from A10 Eq. (A20). The second term of r.h.s. is included in the code, but that is not included in A10 Eq.
(A20). In personal conversation with Felix Pithan and Thorsten Mauritsen, they believe eddies in unstable
condition should also feel the coriolis force (the second term of r.h.s) like in stable condition. Thus, I leave
this as in the code.

2.2 Surface process

Detail descriptions of surface transfer coefficient is provided in this section.
All the equations in section 2.2 are in subroutine sfc exchange coeff of mo turbulence diag.f90
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2.2.1 Turbulent energies

To obtain E, first Ek and Ep are computed as Eqs. (2.10-13) and then E is computed as

i) in stable case (Ri ≥ 0):

E(∗) =

(
1 +

Ep

Ek

)
u2
∗
fτ

(2.39)

ii) in unstable case (Ri < 0):

E(∗) =

(
1 +

Ep

Ek

)
(u3
∗ + 2l gθvw

′θ′)2/3

fτ
(2.40)

from P14 Eq. (5.17).

Again, E is updated once more to get E(t+∆t) by solving vertical diffusion process in VDIFF module like
momentum and dry static energy in the TTE scheme.

2.2.2 Surface transfer coefficient

Surface transfer coefficient for momentum (Cd) and heat (Ch) are defined as

Cd = CN,d · fd, (2.41)

and

Ch = CN,h · fh, (2.42)

from ECHAM6 report Eq. (2.173) where CN,d and CN,h are surface transfer coefficients in neutral case for
momentum and heat, and fd and fh are stability functions for momentum and heat.

Both of surface transfer coefficients are suggested as

CN,d =
l2s

(fsl z1)
2
[
ln
(
z1
z0

)]2, (2.43)

and

CN,h =
l2s

(fsl z1)
2
[
ln
(
z1
z0

)] [
ln
(
z1
z0h

)] 1

Pr0
, (2.44)

from M07 Eqs. (9) and (10) and P14 Eqs. (5.15) and (5.16) where z1 is height of the first model full level,
ls is length scale at the surface, fsl = 0.4 is the fraction of the first level height at which the surface fluxes
are nominally evaluated, z0 is roughness length for momentum, and z0h is roughness length for heat.

Both of stability functions can be obtained

i) in stable case (Ri ≥ 0):

fd =
fτ
fτ0

, (2.45)

and

fh =
fθ
fθ0

√
fτ
fτ0

, (2.46)

from M07 Eqs. (9) and (10) and P14 Eqs. (5.15) and (5.16)

ii) in unstable case (Ri < 0):

fd =

1−
2cRi

1 + 3c2CN,d

√
−Ri

(
z1
z0

+ 1
)
 , (2.47)

and

fh =

1−
3cRi

1 + 3c2CN,h

√
−Ri

(
z1
z0h

+ 1
)
 , (2.48)

from ECHAM6 report Eqs. (2.180) and (2.181) where c = 5.
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2.2.3 Moist Richardson number

The Ri at surface is determined same as Eq. (2.25) except S. In case of surface S is suggested as

S2 =
(U1)2 + (V1)2 + (cww∗)

2

z2
1

, (2.49)

from P14 Eq. (5.16) where U1 and V1 are wind speed at model full level and cw = 0.5 is the ratio of the
mean absolute wind at the first level to the convective velocity scale under free convection.

2.2.4 Surface length scale

The ls, surface length scale is calculated as
i) in stable case (Ri ≥ 0):

1

ls
=

1

kfslz1
+

f

Cf
√
fτEk

+
N

CN
√
fτEk

+
3

k(hd − fslz1)
, (2.50)

ii) in unstable case (Ri < 0):

1

ls
=

1

kfslz1
+

f

Cf
√
fτEk

+
3

k(hd − fslz1)
. (2.51)

There is no reference for equation and it has a terms for unstable condition (the fourth term of r.h.s). In
personal conversation with Felix Pithan and Thorsten Mauritsen, they think hd in stable condition are small
enough so including this term does not make big differences from the case that this term is not included.

2.3 Tendency (VDIFF module)

Detail description of momentum (and E) and temperature (and scalar) tendencies are provided in this
section. The tendency in ICON-AES is calculated by VDIFF module which is implicit time stepping solver,
since turbulent mixing is a very fast process compared to the typical time step used by global hydrostatic
models (ECHAM6 report).

2.3.1 Discretization

The tendency of prognostic variable (ψ), which can be momentum (and E) or heat (and scalar), due to
turbulent motion is obtained from

(
∂ψ

∂t

)
turb

=
ψ

(t+∆t)
k − ψ(t)

k

∆t

= −∂w
′ψ′

∂p
=

∂

∂p

[
ρgKψ

(
−∂ψ̂
∂z

)]
.

(2.52)

in subroutine vdiff tendencies of mo vdiff solver.f90

To integrate Eq. (2.52), the model from time instance t to t + ∆t, the r.h.s of Eq. (2.52) has to be

evaluated at intermediate time level ψ̂ defined by

ψ̂k = α ψ
(t+∆t)
k + (1− α) ψtk, (2.53)

where α = 1.5 denotes the implicitness factor and follows its value the IFS model of the ECMWF.

After discretization of Eq. (2.52) and substitution of Eq. (2.53) in to Eq. (2.52), we can get

−Ak+1/2

ψ̂k+1

α
+Bk+1/2

ψ̂k

α
− Ck+1/2

ψ̂k−1

α
=
ψ

(t)
k

α
, (2.54)

where Ak+1/2, Bk+1/2, and Ck+1/2 are obtained as

Ak+1/2 =
1

∆pk
∆tαg

ρk+1/2 Kψ,k+1/2

zk − zk+1
, (2.55)

Ck+1/2 =
1

∆pk
∆tαg

ρk−1/2 Kψ,k−1/2

zk−1 − zk
, (2.56)

Bk+1/2 = 1 +Ak+1/2 + Ck+1/2, (2.57)

i) for k = 1
Ck+1/2 should be rewritten as

Ck+1/2 = 0, (2.58)
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ii) for k = nlev
Ak+1/2 should be rewritten as

Ak+1/2 = Cψ∆tα
ρk

Mk

√
(U1)2 + (V1)2 + (cww∗)2, (2.59)

Mk is air mass [kg m−2]
in subroutine matrix setup elim of mo vdiff solver.f90

2.3.2 Tridiagonal matrix

Firstly, Ek+1/2 and Fk+1/2 are computed from k = 1 to k = nlev as

Ek+1/2 =
Ak+1/2

Bk+1/2 − Ck+1/2 Ek−1/2
(2.60)

and in subroutine matrix setup elim of mo vdiff solver.f90
for k = nlev, in subroutine matrix to richtmyer coeff of mo vdiff solver.f90

Fk+1/2 =
ψ

(t)
k /α+ Ck+1/2 Fk−1/2

Bk+1/2 − Ck+1/2 Ek−1/2
. (2.61)

in subroutine rhs elim of mo vdiff solver.f90
for k = nlev, in subroutine matrix to richtmyer coeff of mo vdiff solver.f90

Then, ψ̂k is computed from k = nlev to k = 1 as

ψ̂k = Ek+1/2 ψ̂k+1 + Fk+1/2. (2.62)

in subroutine rhs bksub of mo vdiff solver.f90

Finally, ψ
(t+∆t)
k is calculated using Eq. (2.53) according to ψ

(t+∆t)
k = 1

α ψ̂k −
(1−α)
α ψ

(t)
k and the tendency is

calculated as
(
∂ψ
∂t

)
turb

=
ψ

(t+∆t)
k −ψ(t)

k

∆t .

3 ICON-LEM: 3D Smagorinsky turbulent scheme

3D Smagrinsky turbulent scheme was implemented into ICON-LEM by Anurag Dipankar in 2013. This
chapter will provide description of 3D Smagorinsky turbulent scheme based on the codes and Dipankar et
al., 2015. I will refer Dipankar et al. (2015) as D15 for the convenience.

3.1 Atmospheric process

Detail descriptions of exchange coefficient in atmosphere are provided in this section. You can find further
detail on grid system in Wan (2009) and Dipankar et al. (2015).

3.1.1 Exchange coefficient

The Km at grid center and interface level is given by

Km = λ2ρ |S|

(
1−

Ri

Pr

)1/2

for

(
1− Ri

Pr

)
> 0, (3.1)

and

Kh =
Km

Pr
, (3.2)

from D15 Eq. (10), where λ is subgrid length scale, |S| = |D|/
√

2, D is shear strain tensor, and Pr = 0.33333.
There is a comment on Km in the code: note that the factor

√
2 with λ2 is considered into the Smagorinsky

constant.
in subroutine smagorinsky model of mo sgs turbulence.f90
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3.1.2 Richardson number

Richardson number, Ri, is obtained as

Ri =
N2

S2
, (3.3)

where N2 and S2 are

N2 =
g

θv

∆θv

∆z
, (3.4)

in subroutine brunt vaisala freq of mo les utilities.f90
and

S2 =
D2

2
. (3.5)

in subroutine smagorinsky model of mo sgs turbulence.f90

3.1.3 Subgrid length scale

The λ subgrid length scale is given by

1

λ2
=

1

(Cs∆)2
+

1

(kz)2
, (3.6)

where Cs = 0.23 is Smagorinsky constant and ∆ = (∆x∆y∆z)1/3.
in subroutine smagorinsky model of mo sgs turbulence.f90

3.1.4 Shear strain tensor

Shear strain tensor, D, will be suggested this subsection. It is better to define the coordinate system of
the ICON before moving on the detail. x1 is the horizontal axis normal to the triangle edge, x2 is the hori-
zontal axis to the triangle edge, x3 is vertical axis (Figs. 1 and 2). Velocity components (v1, v2, v3) increase
along with these axises. v1 is velocity component normal to the triangle edges at triangle edge and full level
(can be referred as vn), v2 is tangential velocity component at triangle edge and full level (can be referred as
vt), and v3 is vertical velocity component at triangle center and interface level. Furthermore, I would like to
define notations used here. Position letters denote e: triangle edge, v: triangle vertex, c: triangle center, f :
full level, and i: interface level (Fig. 1). The arrow on the superscript indicates interpolation from left letter
to right letter. ∆ operator with subscript indicate difference between the variables at right letter and left

letter. ∆x3
operator means difference between the variables at two interface levels. For example, ∆ab v

(e→v)
1

indicates v1 at b minus v1 at a and two v1 are interpolated into triangle vertex from triangle edge before
subtraction.

Shear strain tensor is given by

D11 = 2

(
∂v1

∂x1

)

= 2

(
∆ab v

(e→v)
1

∆ab x1

)
,

(3.7)

D12 =

(
∂v1

∂x2
+
∂v2

∂x1

)

=

(
∆dc v

(e→v)
1

∆dc x2
+

∆ab v
(e→v)
2

∆ab x1

)
,

(3.8)

D13 =

(
∂v1

∂x3
+
∂v3

∂x1

)

=

(
∆x3

v
(f→i)
1

∆ x3
+

∆qp v
(i→f)
3

∆qp x1

)
,

(3.9)

D21 = D12, (3.10)
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D22 = 2

(
∂v2

∂x2

)

= 2

(
∆dc v

(e→v)
2

∆dc x2

)
,

(3.11)

D23 =

(
∂v2

∂x3
+
∂v3

∂x2

)

=

(
∆x3

v
(f→i)
2

∆ x3
+

∆dc v
(c→v)(i→f)
3

∆dc x2

)
,

(3.12)

D31 = D13, (3.13)

D32 = D23, (3.14)

D33 = 2

(
∂v3

∂x3

)

= 2

(
∆x3

v
(c→e)
3

∆ x3

)
,

(3.15)

D2 = D2
11 +D2

22 +D2
33 + 2

(
D2

12 +D2
13 +D2

23

)
, (3.16)

from D15 Eqs. (20-28).
in subroutine smagorinsky model of mo sgs turbulence.f90

The subgrid-scale stress tensor is parameterized

τij = Km

(
Dij −

1

3
δij

3∑
m=1

Dmm

)
(3.17)

Figure 1: (left) Schematic showing the primal (black triangles) and dual (red hexagons) cells, and the
associated local coordinate system. Unit vectors 1, 2, and 3 point in the direction of edge normal, tangent,
and vertically upward, respectively. (right) Schematic of two adjacent triangles in ICON grid identifying the
various locations used to discretize the turbulent diffusion term. The figure is taken from D15.

3.2 Surface process

There is nothing to describe. Surface sensible heat flux (H), latent heat flux, and friction velocity (u∗)
are calculated in simple surface layer scheme.
in subroutine surface condition of mo surface les.f90

9



Figure 2: The primal and dual cells and edges, and the associated unit vectors and areas. The figure is taken
from Wan, 2009.

3.3 Tendency

Detail description of momentum and temperature (and scalar) tendencies are described in this section.
The tendency in ICON-LEM is derived from horizontal diffusion terms and a vertical diffusion term. The
horizontal diffusion is calculated explicitly whereas the vertical diffusion is calculated implicitly. Calculation
processes for v1, v3, and temperature are different since v1 is stored at triangle edge and full level, v3 is
stored at triangle center and interface level, and temperature is stored at triangle center and full level. Thus,
I separate this section into three subsections.

3.3.1 Normal velocity tendency

Total tendency: (
∂v1

∂t

)
=

(
∂v1

∂t

)
hori,turb

+

(
∂v1

∂t

)
vert,turb

, (3.18)

Horizontal tendency: (
∂v1

∂t

)
hori,turb

=
1

ρ

(
∂τ11

∂x1
+
∂τ12

∂x2

)

=
1

ρ
(c→e)
k

(
∆qp τ11

∆qp x1
+

∆gf τ12

∆gf x2

)
,

(3.19)

∆qp τ11 = K(i→f)
m

[
2

(
∆eb v1

∆eb x1

)
−

2

3
Div.

]
−K(i→f)

m

[
2

(
∆ae v1

∆ae x1

)
−

2

3
Div.

]
, (3.20)

from D15 Eq. (B1) where Div. = 1
2 (D11 +D22 +D33) and

∆gf τ12 = K(c→v)(i→f)
m

[
∆ec v1

∆ec x2
+

∆ab v2

∆ab x1

]
−K(c→v)(i→f)

m

[
∆de v1

∆de x2
+

∆ab v2

∆ab x1

]
, (3.21)

from D15 Eq. (B2).
in subroutine diffuse hori velocity of mo sgs turbulence.f90

Vertical tendency (implicit method):(
∂v1

∂t

)
vert,turb

=
v

(t+∆t)
1 − v(t)

1

∆t

=
1

ρ

(
∂τ13

∂x3

)

=
1

ρ
(c→e)
k

(
∆x3 τ13

∆ x3

)
,

(3.22)

∆x3
τ13 = K

(c→e)
m,k−1/2

[
∆x3

v1

∆x3
+

∆qp v3

∆qp x1

]
−K(c→e)

m,k+1/2

[
∆x3

v1

∆x3
+

∆qp v3

∆qp x1

]
, (3.23)

where v
(t+∆t)
1 is v1 at time t+ ∆t. For vertical tendency, implicit method is used. It is noticeable that the

implicitness factor, α, is different from that of ICON-AES as α = 1 is used here.

After discretization, Eq. (3.22) can be rewritten as

Ak+1/2 v
(t+∆t)
1,k−1 +Bk+1/2 v

(t+∆t)
1,k + Ck+1/2 v

(t+∆t)
1,k+1 =

v
(t)
1,k

∆t
+ Ωk, (3.24)
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where Ak+1/2, Bk+1/2, Ak+1/2, and Ωk are given by

Ak+1/2 = −
1

ρ
(c→e)
k ∆x3

K
(c→e)
m,k−1/2

zk−1 − zk
, (3.25)

Ck+1/2 = −
1

ρ
(c→e)
k ∆x3

K
(c→e)
m,k+1/2

zk − zk+1
, (3.26)

Bk+1/2 =
1

∆t
−Ak+1/2 − Ck+1/2, (3.27)

Ωk =
1

ρ
(c→e)
k ∆x3

[
K

(c→e)
m,k−1/2

∆qp v3,k−1/2

∆qp x1
−K(c→e)

m,k+1/2

∆qp v3,k+1/2

∆qp x1

]
, (3.28)

i) for k = 1
Km,k−1/2 should be rewritten as

K
(c→e)
m,k−1/2 = 0, (3.29)

ii) for k = nlev
Km,k+1/2 and Ω should be rewritten as

K
(c→e)
m,k+1/2 = 0, (3.30)

and

Ωk =
1

ρ
(c→e)
k ∆x3

[
K

(c→e)
m,k−1/2

∆qp v3,k−1/2

∆qp x1

]
−

u2
∗

∆zk−1/2
, (3.31)

where u∗ is friction velocity.
in subroutine diffuse hori velocity of mo sgs turbulence.f90

Firstly, Ek+1/2 and Fk+1/2 are computed from k = 1 to k = nlev as

Ek+1/2 =
Ck+1/2

Bk+1/2 −Ak+1/2 Ek−1/2
, (3.32)

and

Fk+1/2 =
v

(t)
1,k/∆t+ Ωk −Ak+1/2Fk−1/2

Bk+1/2 −Ak+1/2 Ek−1/2
. (3.33)

Then, v
(t+∆t)
1,k is computed from k = nlev to k = 1 as

v
(t+∆t)
1,k = −Ek+1/2 v

(t+∆t)
1,k+1 + Fk+1/2. (3.34)

in subroutine tdma solver of mo math utilities.f90

Finally, the tendency is calculated as
(
∂v1

∂t

)
vert,turb

=
v

(t+∆t)
1 −v(t)

1

∆t .

3.3.2 Vertical velocity tendency

Total tendency: (
∂v3

∂t

)
=

(
∂v3

∂t

)
hori,turb

+

(
∂v3

∂t

)
vert,turb

, (3.35)

Horizontal tendency: (
∂v3

∂t

)
hori,turb

=
1

ρ

(
∂τ31

∂x1
+
∂τ32

∂x2

)

=
1

ρ
(f→i)
k

(
∆qp τ31

∆qp x1
+

∆gf τ32

∆gf x2

)
,

(3.36)

∆qpτ31 = Km

[
v

(e→c(p))
1,k−1 − v(e→c(p))

1,k

zk−1 − zk
+

∆eb v3

∆eb x1

]
−Km

[
v

(e→c(q))
1,k−1 − v(e→c(q))

1,k

zk−1 − zk
+

∆ae v3

∆ae x1

]
, (3.37)
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∆gfτ32 = K(c→v)
m

[
v

(e→v(c))
2,k−1 − v(e→v(c))

2,k

zk−1 − zk
+

∆ec v3

∆ec x2

]
−K(c→v)

m

[
v

(e→v(d))
2,k−1 − v(e→v(d))

2,k

zk−1 − zk
+

∆de v3

∆de x2

]
, (3.38)

where c(p) is interpolation to triangle center at p, c(q) is interpolation to triangle center at q, v(c) is inter-
polation to triangle vertex at c, and v(d) is interpolation to triangle vertex at d.

Vertical tendency (implicit method):(
∂v3

∂t

)
vert,turb

=
v

(t+∆t)
3,k−1/2 − v

(t)
3,k−1/2

∆t

=
1

ρ

(
∂τ33

∂x3

)

=
1

ρk

(
τ33,k−1 − τ33,k

zk−1 − zk

)
,

(3.39)

τ33,k−1−τ33,k = K
(i→f)
m,k−1

[
2

(
v3,k−3/2 − v3,k−1/2

zk−3/2 − zk−1/2

)
−

2

3
Divk−1

]
−K(i→f)

m,k

[
2

(
v3,k−1/2 − v3,k+1/2

zk−1/2 − zk+1/2

)
−

2

3
Divk

]
.

(3.40)

After discretization, Eq. (3.39) can be rewritten as

Ak v
(t+∆t)
3,k−3/2 +Bk v

(t+∆t)
3,k−1/2 + Ck v

(t+∆t)
3,k+1/2 =

v
(t)
3,k−1/2

∆t
+ Ωk−1/2, (3.41)

where Ak, Bk, Ck, and Ωk−1/2 are computed as

Ak = −2
1

ρk(zk−1 − zk)

K
(i→f)
m,k−1

∆x3
, (3.42)

Ck = −2
1

ρk(zk−1 − zk)

K
(i→f)
m,k

∆x3
, (3.43)

Bk =
1

∆t
−Ak − Ck, (3.44)

Ωk−1/2 = −
2

3
K

(i→f)
m,k−1Divk−1 +

2

3
K

(i→f)
m,k Divk, (3.45)

i) for k = 2
Ak and Bk should be rewritten as

Ak = 0, (3.46)

and

Bk =
1

∆t
+ 2

1

ρk(zk−1 − zk)

K
(i→f)
m,k−1

∆x3
− Ck, (3.47)

ii) for k = nlev
Bk and Ck should be rewritten as

Ck = 0, (3.48)

and

Bk =
1

∆t
−Ak + 2

1

ρk(zk−1 − zk)

K
(i→f)
m,k

∆x3
. (3.49)

in subroutine diffuse vert velocity of mo sgs turbulence.f90

Firstly, Ek and Fk are computed from k = 1 to k = nlev as

Ek =
Ck

Bk −Ak Ek−1
, (3.50)
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and

Fk =
v

(t)
3,k−1/2/∆t+ Ωk−1/2 −AkFk−1

Bk+1 −Ak+1 Ek−1
. (3.51)

Then, v
(t+∆t)
1,k−1/2 is computed from k = nlev to k = 1 as

v
(t+∆t)
3,k−1/2 = −Ek v(t+∆t)

3,k+1/2 + Fk. (3.52)

in subroutine tdma solver of mo math utilities.f90

Finally, the tendency is calculated by
(
∂v3

∂t

)
vert,turb

=
v

(t+∆t)

3,k−1/2
−v(t)

3,k−1/2

∆t .

3.3.3 Temperature tendency

Total tendency: (
∂T

∂t

)
=

(
∂T

∂t

)
hori,turb

+

(
∂T

∂t

)
vert,turb

, (3.53)

Horizontal tendency: (
∂T

∂t

)
hori,turb

= −

(
∂v′1T

′

∂x1
+
∂v′2T

′

∂x2

)

=

[
∇tri ·

(
k

(c→e)
h

∆qpTk

∆qpx1

)]
φ,

(3.54)

where ∇tri is divergence at center of the triangular grid, and φ =
cp
cv

is coupler that converts the temperature
tendency for the dynamics.

Vertical tendency (implicit method):(
∂T

∂t

)
vert,turb

=
T

(t+∆t)
k − T (t)

k

∆t

= −
∂v′3T

′

∂x3

=

[
Kh,k−1/2

Tk−1 − Tk
zk−1 − zk

−Kh,k+1/2

Tk − Tk+1

zk − zk+1

]
φ.

(3.55)

After discretization, Eq. (3.55) can be rewritten as

Ak+1/2 T
(t+∆t)
k−1 +Bk+1/2 T

(t+∆t)
k + Ck+1/2 T

(t+∆t)
k+1 =

T
(t)
k

∆t
+ Ωk (3.56)

where Ak+1/2, Bk+1/2, Ck+1/2, and Ωk are obtained as

Ak+1/2 = −
1

∆x3

Kh,k−1/2

zk−1 − zk
φ, (3.57)

Ck+1/2 = −
1

∆x3

Kh,k+1/2

zk − zk+1
φ, (3.58)

Bk+1/2 =
1

∆t
−Ak+1/2 − Ck+1/2, (3.59)

Ωk = 0, (3.60)

i) for k = 1
Ak+1/2 should be rewritten as

Ak+1/2 = 0, (3.61)

ii) for k = nlev
Ck+1/2 and Ωk should be rewritten as

Ck+1/2 = 0, (3.62)
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and

Ωk =
1

∆x3
Hφ, (3.63)

where H is surface sensible heat flux [Kms−1].
in subroutine diffuse scalar of mo sgs turbulence.f90

Firstly, Ek+1/2 and Fk+1/2 are computed from k = 1 to k = nlev as

Ek+1/2 =
Ck+1/2

Bk+1/2 −Ak+1/2 Ek−1/2
, (3.64)

and

Fk+1/2 =
T

(t)
k /∆t+ Ωk −Ak+1/2Fk−1/2

Bk+1/2 −Ak+1/2 Ek−1/2
. (3.65)

Then, v
(t+∆t)
1,k is computed from k = nlev to k = 1 as

T
(t+∆t)
k = −Ek+1/2 T

(t+∆t)
k+1 + Fk+1/2. (3.66)

in subroutine tdma solver of mo math utilities.f90

Finally, the tendency is calculated by
(
∂T
∂t

)
vert,turb

=
T

(t+∆t)
k −T (t)

k

∆t .
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