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Clustering: Self-Organising Maps (SOMs)

 SOMs to cluster data into regions of similar properties (Kohonen 1987, 2001)

Figure adapted from Keppler et al. (in prep.) 2



Where to build a pizzeria

 Giovanni wants to build three pizzarias near the MPI-M

 Where should he put them?
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Where to build a pizzeria

people who eat a lot of pizza
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 Giovanni wants to build three pizzarias near the MPI-M

 Where should he put them?



Where to build a pizzeria

 We start with three random locations for the pizzeria
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Where to build a pizzeria

 We start with three random locations for the pizzeria

 Everyone goes to the one that is closest
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Where to build a pizzeria

 We move the pizzaria to the center of the houses
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Where to build a pizzeria

 We re-adjust the closest pizzarias for each house

3



Where to build a pizzeria

 We repeat this process until the distances do not get 
smaller anymore
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SOM-clustering with non-pizza variables

 We can e.g., use normalized temperature and salinity to cluster the ocean 
into water masses
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SOM-clustering with non-pizza variables

 Example: temperature and salinity at 10 m as input to SOMs 
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Feed-Forward Networks (FFNs)

• FFNs compute and apply statistical relationships  between multiple 
predictor and target variables  to approximate a function  

→ like a MLR, but the relationships don’t have to be linear 

• Here: from sparse data with gaps to mapped data

DIC (µmol kg-1)

Figure adapted from Keppler et al. (in prep.) 7



Feed-Forward Networks (FFNs)

• We have sparse ship data which we want to have mapped (target data)

• We need predictor data (mapped global data; e.g., temperature / salinity)

• The network establishes the statistical relationship between the predictor 
and the target data and then applies this relationship to map the target 
data

target data predictor data

8

DIC (µmol kg-1) temperature (°C) salinity



Establishing the relationship (training the FFN)
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Figure adapted from Olden& Jackson, 2002

9



Applying the relationship

 

 

 

• Now the established relationship between the target data and the predictor 
data is applied to map the target data globally (disclaimer: the resulting 
field is not realistic, because of the simplified set-up, e.g. only SST and SSS 
as predictors; testing of the result is important) 
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Understanding the resonse

• We can see how each of the predictors contributes to the FFN 
(Similar to profile method by Gevrey et al., (2003))

• We train the network as usual, and in the simulation-step, we hold one 
predictor constant in time, and vary the others (iteratively for all predictors)

• We get the change in DIC due to each predictor

a

temperate 
35°N to 65°N

b

subtropical
23°N to 35°N
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Summary

 SOMs can cluster data into (e.g., into regions of similar properties) 

 

 

 

 

 

 FFNs can compute and apply statistical relationsships  between multiple 
predictor and target variables to approximate a function 
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