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The stippling shows statistically
significant grid points

- Wilks, D. S. (2016, BAMS)

“

Individual tests at many spatial grid points

are very often interpreted incorrectly

(multiplicity)

→ research results are overstated

Out of 281 papers in Journal of climate

(first half of 2014):

• 97 (34.5%) did not account for multiplicity

• 3 (1.1%) accounted for multiplicity
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Multiple testing problem – no new story…

• Multiple testing problem known at least back to Walker* (1914)

• Walker‘s method was modernized (Katz and Brown,1991; Katz, 2002) 

and nowadays known as Walkers‘s test:

– Walker noted that the likelihood of small 𝑝-value rises with larger 𝑛: 
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* “Walker Circulation“ named after him;

he first described and named the SO (ENSO), NAO and NPO

𝑼(𝟎, 𝟏) distributed 𝑩𝒆𝒕𝒂(𝟏, 𝒏) distributed

Hedderich and Sachs 
(2018, mod.)

Probability that 𝒑-value is ≤ 𝜶

𝑛 = 1 𝑛 = 100

Sir Gilbert Thomas Walker
(source Royal Society; Taylor 1962)

*14 Jun 1868 † 4 Nov 1958 



Multiple testing problem – no new story…

• Multiple testing problem known at least back to Walker* (1914)

• Walker‘s method was modernized (Katz and Brown,1991; Katz, 2002) 

and nowadays known as Walkers‘s test:

– a more strict significance level is required: 𝛼𝑊𝑎𝑙𝑘𝑒𝑟 = 1 − 1 − 𝛼
1

𝑛

– global 𝐻0
𝐺rejected if 𝑝(1) ≤ 𝛼𝑊𝑎𝑙𝑘𝑒𝑟

• assumes independence and is very conservative (𝛼𝑊𝑎𝑙𝑘𝑒𝑟 ≈ 𝛼/𝑛) 

• no judgement of local test results (𝐻0
𝑖 )

• before we come to a more appropriate method, we need to understand the

origin of the multiple testing problem
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* Sir Gilbert Thomas Walker: “Walker Circulation“ named after him;

he first described and named the SO (ENSO), NAO and NPO

Sir Gilbert Thomas Walker
(source Royal Society; Taylor 1962) 



Hypothesis testing framework

Declared non-
significant (𝑯𝟎)

Declared 
significant (𝑯𝑨)

Total

True Null 
Hypothesis

U
Correct
(𝟏 − 𝜶)

V
Type I error (𝜶)

”false positive/discovery“

m0

Non-true Null 
Hypothesis

T
Type II error (𝜷)

”false negative“

S
Correct (𝟏 − 𝜷,

power)

m1 = m - m0

Total m - R R m

V = Type I error (False Positive / False Discovery)
T = Type II error (False Negative)
S = True positives
R = total tests declared significant
m = number of hypotheses tested
m0 = unknown number of true null hypotheses
m1 = unknown number of non-true hypotheses

U, V, T, S are unobserved random variables

R is an observable random variable
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Pitfalls/considerations here:

1. we need to formulate a good hypothesis

2. we need to choose appropriate test with maximum power 

(assumptions of testing procedure)

3. a-priori choose 𝛼
4. if 𝐻0 is rejected, 𝐻𝐴 is not automatically true

Important for us is V!



• if we test at the 𝛼 = 5% levelA, the probability to falsely reject a true 𝐻0 is

5%. 

• reject 𝐻0: if probability (𝑝-value) of observed or any more extreme test

statistic ෠𝑋, given that 𝐻0 is true, is no larger than 𝛼:

• if 𝐻0 is rejected with 𝛼 = 5%, the result is said to

be significant at the 5% levelB

Hypothesis testing framework – single test (𝒏 = 𝟏)

A First formal statement by Fisher (1925), but originates back to gambling theory in 17th century; introduced to social and 

natural science by Laplace (1749-1827) and Gauss (1777-1855), see Cowles and Davis (1982).
B Often expressed as “at the 95% level“.

𝜶

𝟏 − 𝜷𝟏 − 𝜶

𝜷

෡𝑿
→

x

Pr( ෠𝑋|𝐻0)
Pr( ෠𝑋|𝐻𝐴)

power
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𝒑-value

Pr( ෠𝑋 ≥ 𝑥|𝐻0) ≤ 𝛼



Multiple testing problem – assume all 𝑯𝟎 are true

• any single true 𝐻0 will be rejected with probability 𝛼

• collection of 𝒎𝟎 tests with true 𝐻0 will exhibit, on average, 𝐕 = 𝜶𝒎𝟎

erroneous rejections, if independent*:

– Example 1: if we perform 𝑚0 = 100 tests, then on average

𝜶𝒎𝟎 = 𝟓 tests will result in false positives. 

– Example 2: if 𝑚0 = 802 × 404 = 324008 (TP04), then we get

𝜶𝒎𝟎 = 𝟏𝟔𝟐𝟎𝟎 false positives on average just by chance!

Is actually the mean of the

binomial distribution, so even

more false positives are likely

*Probability is higher with dependencies 5



A global perspective – field significance

• define a global or meta-test on many individual test results – known as

field significance* (Livizey and Chen, 1983; Von Storch, 1982)

• Livizey and Chen‘s approach:

– global null hypothesis 𝐻0
𝐺 : all local 𝐻0

𝑖 = 𝑡𝑟𝑢𝑒; 𝐻𝐴
𝐺 : 𝑛 > 𝛼𝑚0 of 𝐻0

𝑖 rejected

– how many 𝐻0
𝑖 need to be rejected so that Pr(𝑛 > 𝛼𝑚0) ≤ 𝛼𝑔𝑙𝑜𝑏𝑎𝑙 = 𝛼 = 0.05?

(e.g. binomial distribution: if 𝑛 = 100 then n ≥ 10)

– better than näive stippling approach but many drawbacks

(e.g. assumes independence, very sensitive to violation, too permissive → intensive 

resampling)

• often we are not interested in a global meta-test – we want to know the

locations that are significant

*Local tests pertain usually to a grid, thereby composing a 

field of test results.
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• Family Wise Error Rate (FWER) = 𝐏𝐫 𝐕 ≥ 𝟏

• if test results are independent*, 

probability follows binomial distribution:

• Example: 𝛼 = 5% and m = 100 we get 𝐏𝐫 𝑽 ≥ 𝟏 = 𝟎. 𝟗𝟗𝟒*

Probability of at least one wrong false positive: 

𝐏𝐫(𝑽 ≥ 𝟏)?

Probability of no false positive:   
𝐏𝐫 𝑽 = 𝟎 ~ 𝑩𝒊 𝒎,𝜶

Probability of at least one:

𝐏𝐫 𝐕 ≥ 𝟏 = 1 − Pr V = 0 = 𝟏 − (𝟏 − 𝜶)𝒎

*Under dependency Pr 𝑉 ≥ 1 is even higher. 7



• controlling 𝐏𝐫 𝐕 ≥ 𝟏 ≤ 𝜶:

 Bonferroni‘s one step procedure (Bonferroni, 1935):

reject 𝐻0,𝑖 if 𝑝𝑖 ≤
𝛼

𝑛

→ very conservative*

 better methods (based on sorted 𝑝-values): 

Holm‘s step-down (Holm, 1979): 

reject 𝐻0,𝑖 if 𝑝𝑖 >
𝛼

𝑛+1 −𝑖

Hochberg‘s step-up (Hochberg, 1988): 

reject 𝐻0,𝑖 if 𝑝𝑖 ≤
𝛼

(𝑛−𝑖)+1

• all these methods are suited for small n! 

→ we need another approach

How to control 𝐏𝐫(𝑽 ≥ 𝟏)?

* Increases Type II error;

very little power for large n. 
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• Proportion of the rejected null hypothesis

which are erroneously rejected is: 

• we want to control 𝐸(𝑸) ≤ 𝛼𝐹𝐷𝑅B

(often you find 𝑞 instead of 𝛼𝐹𝐷𝑅)

Controlling the False Discovery Rate (FDR)
Benjamini, Y. and Hochberg, Y.,1995: Controlling the False

Discovery Rate: A Practical and Powerful Approach to Multiple 

Testing. J. R. Statist. Soc. B, 57, No. 1, 289-300.

FDR is the statistically expected fraction of

erroneously rejected (discoveries) among all 

rejections

A There has to be at least one rejection of 𝐻0. We cannot control E(V/R), 

but Benjamini and Hochberg (1995) show that it is possible to control

E(V/R|R>0)P(R>0).

B Also weak control of FWER = Pr 𝑉 ≥ 1 : if all 𝐻0are true (𝑚0 = 𝑚) the 

FDR is the same as the probability of making even one error: 

FDR = 𝐸 1 𝑹 > 0 𝑃 𝑹 > 0 = 𝑃 𝑹 > 0 = Pr 𝑽 > 0 = FWER.

→ Top 10 statistics publication of all time (>58k citations)!

→ took them 5 years and 3 journals to publish (Benjamini, 2010)

𝑸 = ቊ
𝑽/𝑹
0

if 𝑹 > 0
otherwise

false discovery proportion (FDP); 

unobserved random variable

𝐅𝐃𝐑 = 𝐸 𝑸 = 𝐸
𝑽

𝑹
𝑹 > 0 𝑃 𝑹 > 0 A
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• FDR requires smaller 𝑝-values in order to reject local null hypotheses

• algorithm: 

1. sort 𝑝-values from 𝒏 local tests 𝒑𝒊 in ascending order with 𝑖 = 1,… , 𝑛

2. denote sorted 𝑝-value as 𝑝(1) ≤ 𝑝 2 ≤ … ≤ 𝑝(𝑛)

3. local 𝐻0 are rejected if their 𝑝-values 𝑝𝑖 are no larger than a threshold level 𝒑𝑭𝑫𝑹
∗ :

• most commonly 𝛼𝐹𝐷𝑅 = 𝛼

• 𝛼𝐹𝐷𝑅 has to be chosen a-priori

Controlling the False Discovery Rate (FDR)

𝑝𝐹𝐷𝑅
∗ = max

𝑖=1,…𝑛
𝑝(𝑖): 𝑝(𝑖) ≤

𝑖

𝑛
𝛼𝐹𝐷𝑅

Benjamini and Hochberg (1995):
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𝑝𝐹𝐷𝑅
∗ = 0.012

Controlling the False Discovery Rate (FDR)

𝑝𝐹𝐷𝑅
∗ = max

𝑖=1,…𝑛
𝑝(𝑖): 𝑝(𝑖) ≤

𝑖

𝑛
𝛼𝐹𝐷𝑅

𝛼𝐹𝐷𝑅 = 0.05

𝛼 = 0.05
𝑛 = 100
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Controlling the False Discovery Rate (FDR)

Wilks (2016)

𝐻0: 𝑏 = 0
𝐻𝐴: 𝑏 ≠ 0
local t tests

12



Controlling FDR under dependency

• In practice, test statistics are not 

independent, e.g. spatial correlation

• FDR robust under dependence
(Ventura et al., 2004; Wilks, 2006; Wilks, 2016)

→ conservative for moderate to strong spatial

correlation

→ account for temporal correlation by appropriate

local testing procedure

• Several modifications to FDR under

dependence (e.g. Benjamini and Yekutieli, 2001) 

→ active research area

• Modifications usually available in software Wilks (2016, mod.)

Spatial correlation

A
c
h
ie

v
e
d

F
D

R

𝛼𝐹𝐷𝑅
∗ ~2𝛼𝐹𝐷𝑅 13



How to apply False Discovery Rate (FDR) procedure?

• FDR is easy to use:

input: provide vector of 𝑝-values and q (𝛼𝐹𝐷𝑅)

output: vector of adjusted 𝑝-values

– R: p.adjust(pvals,method="BH") # returns p. adj =
𝑛

𝑖
𝑝𝑖

– Matlab: fdr_bh(pvals,q)

– Python: statsmodels.stats.multitest.multipletests(pvals, 

alpha=0.05,method="fdr_bh")
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Conclusions

• preferable to control the proportion of errors (FDR) rather than the 

probability of making one error (FWER)

• FDR is the best method available to analyse multiple hypothesis test

results

• valid for all kind of tests, even under dependence (e.g. spatial correlation). 
(Wilks, 2016; Wilks, 2006; Ventura et al. 2004).

• modifications for FDR under dependency (e.g. Benjamini and Yekutieli, 2001) 

→ active research area

• FDR ensures that no more than 𝜶𝑭𝑫𝑹% of significant results will be false 

positives instead of 𝜶% of all test results
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