Controlling the false discovery rate in
multiple hypothesis testing
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The stippling shows statistically
significant grid points

- Wilks, D. S. (2016, BAMS)

Individual tests at many spatial grid points Out of 281 papers in Journal of climate
are very often interpreted incorrectly (first half of 2014):
(multiplicity)

* 97 (34.5%) did not account for multiplicity
— research results are overstated * 3 (1.1%) accounted for multiplicity
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Multiple testing problem — no new story...

« Multiple testing problem known at least back to Walker" (1914)

 Walker's method was modernized (Katz and Brown,1991; Katz, 2002)
and nowadays known as Walkers's test:

— Walker noted that the likelihood of small p-value rises with larger n:

Probability that p-value is < a

~ |1 U(0,1) distributed ~ || Beta(1,n)distributed Sir Gilbert Thomas Walker
o o (source Royal Society; Taylor 1962)
n=1 n =100 14 Jun 1868 1 4 Nov 1958
E Pr(P, <0.05)=0.05 g Pr(miin (P;) <0.05)=0.401
™~ N
. B o
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00 02 04 06 08 1.0 00 02 04 06 08 1.0 Hedderichand Sachs
(2018, mod.)
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Multiple testing problem — no new story...

« Multiple testing problem known at least back to Walker" (1914)

 Walker's method was modernized (Katz and Brown,1991; Katz, 2002)
and nowadays known as Walkers's test:

1
— a more strict significance level is required: oy jxer = 1 — (1 — a)n
— global Hirejected if p(y) < ayaiker

Sir Gilbert Thomas Walker
(source Royal Society; Taylor 1962)

« assumes independence and is very conservative (ay iker =~ /1)

* no judgement of local test results (H})
* before we come to a more appropriate method, we need to understand the
origin of the multiple testing problem
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Hypothesis testing framework

True Null
Hypothesis

Non-true Null
Hypothesis

Total

Declared non- Declared
significant (H) significant (Hy)
U \' m,
Correct Type | error ()
(1 — a) "false positive/discovery”
T S m;=m-m,
Type Il error (f3) Correct (1 — f3,
"false negative” power)
m-R R m

V = Type | error (False Positive / False Discovery)
T = Type Il error (False Negative)

S = True positives

R = total tests declared significant

m = number of hypotheses tested

m, = unknown number of true null hypotheses

m, = unknown number of non-true hypotheses

U, V, T, S are unobserved random variables
R is an observable random variable
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Pitfalls/considerations here:

1.
2.

3.

we need to formulate a good hypothesis

we need to choose appropriate test with maximum power
(assumptions of testing procedure)

a-priori choose a

if Hy is rejected, Hy is not automatically true

Important for us is V!
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Hypothesis testing framework — single test (n = 1)

if we test at the a = 5% level?, the probability to falsely reject a true H, is
5%.

reject Hy: if probability (p-value) of observed or any more extreme test
statistic X, given that H, is true, is no larger than a:

Pr(X|H,) Pr(X|H,)
~ Theoretical
Null non-null value
Pr(X = x|Hy) < «
p—v::llue

Alternative
Hypothesis

Null
Hypothesis

HD

if Hy is rejected with a« = 5%, the result is said

1«

be significant at the 5% level® Typell Typel

)

error error
B a
Max-Planck-Institut AFirst formal statement by Fisher (1925), but originates back to gambling theory in 17t century; introduced to social and
Y natural science by Laplace (1749-1827) and Gauss (1777-1855), see Cowles and Davis (1982). 4

B Often expressed as “at the 95% level“.



Multiple testing problem —assume all H, are true

Declared non- Declared significant
significant (H ) (Hy)
True Null U Vv m,
Hypothesis Correct Type | error (x)
(1-a)

« any single true H, will be rejected with probability «

« collection of m tests with true H, will exhibit, on average, V = am,
erroneous rejections, if independent™ N

Is actually the mean of the
binomial distribution, so even
more false positives are likely

— Example 1: if we perform m, = 100 tests, then on average
amg = 5 tests will result in false positives.

— Example 2: if my = 802 x 404 = 324008 (TP04), then we get
amg = 16200 false positives on average just by chance!

Max-Planck-Institut “Probability is higher with dependencies 5
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A global perspective — field significance

« define a global or meta-test on many individual test results — known as
field significance” (Livizey and Chen, 1983; Von Storch, 1982)

« Livizey and Chen‘s approach:

— global null hypothesis H{: all local H) = true; H{:n > am, of H) rejected

— how many H{ need to be rejected so that Pr(n > amg) < @ 150 = @ = 0.057
(e.g. binomial distribution: if n = 100 then n > 10)
— better than naive stippling approach but many drawbacks

(e.g. assumes independence, very sensitive to violation, too permissive — intensive
resampling)

« often we are not interested in a global meta-test — we want to know the
locations that are significant

Max-Planck-Institut “Local tests pertain usually to a grid, thereby composing a 6
fir Meteorologie field of test results.
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Probability of at least one wrong false positive:

Pr(V > 1)7? FWER
« Family Wise Error Rate (FWER) =Pr(V = 1)
« if test results are independent’, =
probability follows binomial distribution: <
Probability of no false positive:
Pr(V =0) ~ Bi(m, a)
Probability of at least one: (') 2'0 4'0 6'0 8'0 1(')0
Priv=1)=1-Pr(V=0=1-(1-a)™

« Example: a = 5% and m = 100 we get Pr(V = 1) = 0.994"

Max-Planck-Institut *Under dependency Pr(V = 1) is even higher. 7
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How to control Pr(V = 1)?

« controlling Pr(V=1) < a:

— Bonferroni‘s one step procedure (Bonferroni, 1935):

* all these methods are suited for small n!

-
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reject Hy ; if p; < %
— very conservative®

better methods (based on sorted p-values):

Holm's step-down (Holm, 1979):

. . (44
reject Hy ; if p; > T

Hochberg‘s step-up (Hochberg, 1988):

reject Hy; if p; < ——

we need another approach

Pr(V=1)

FWER

“Increases Type I error;
very little power for large n.
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Controlling the False Discovery Rate (FDR)

Benjamini, Y. and Hochberg, Y.,1995: Controlling the False — Top 10 statistics publication of all time (>58k citations)!
DlSCOVery Rate: A Practical and Powerful Approach to Multlple - took them 5 years and 3 journa|5 to pub“sh (Benjamini’ 2010)
Testing. J. R. Statist. Soc. B, 57, No. 1, 289-300.

« Proportion of the rejected null hypothesis e e
which are erroneously rejected is: Hhpothes Coret npetarer "

. N:::c:::egi:” Type Il :f’mf (£) Correcrs(]_ —B, mm
V / R ifR>0 false discovery proportion (FDP); o e ”°:’e” .

Q:

() Otherwise unobserved random variable

FDR is the statistically expected fraction of

FDR = E(Q) =F (% |R > 0) P(R > O)A erroneously rejected (discoveries) among all

rejections

AThere has to be at least one rejection of H,. We cannot control E(V/R),
but Benjamini and Hochberg (1995) show that it is possible to control

« we want to control E(Q) < AppR® E(V/R[R>0)P(R>0).

(Often you find q instead of aFDR) B Also weak control of FWER = Pr(V > 1): if all Hyare true (m, = m) the
FDR is the same as the probability of making even one error:
FDR = E(1|R > 0)P(R > 0) = P(R > 0) = Pr(V > 0) = FWER.
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Controlling the False Discovery Rate (FDR)

Benjamini and Hochberg (1995):
 FDR requires smaller p-values in order to reject local null hypotheses

« algorithm:
1. sort p-values from n local tests p; in ascending order withi =1, ...,n
2. denote sorted p-value as pi1y < p) < - < Pm)

3. local H, are rejected if their p-values p; are no larger than a threshold level p;pr:

l
 most commonly appr = @ PFDR = max 1Py D) = aFDR

=
*  appr has to be chosen a-priori
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Controlling the False Discovery Rate (FDR)

(a) all p-values (b) close-up
© . B . _ i
o S| S Prpr = MaAX \P@i):P@i) = 3 @FDR
° ] I loc cé? 8
— n FDR 8 P
M~
g © ] § . 3
5 - o 5 o
© < _
P o s ; . 3%05
el o .
£ 7 ° £ a=0.
N S "o ArpRr = 0.05
S
- =~ Prpr = 0.012
8
o
100 40
rank i rank i

Max-Planck-Institut
fir Meteorologie

@




@

Controlling the False Discovery Rate (FDR)

Ho:b = O
HA:b * 0
local t tests
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2.5 0
Trend (mm yr”' per decade)

FiG. 7. Linear trends in annual precipitation during 1951-2010, based on data
from the Global Historical Climatology Network (Vose et al. 1992). Grid ele-
ments with linear trends exhibiting local statistical significance at the a = 0.10
level are been indicated by the plus signs, and those with p values small enough
to satisfy the FDR criterion with a . = 0.10 [Eq. (3)] are indicated by the red
circles. The figure has been modified from Hartmann et al. (2013, p. 203).

Wilks (2016)
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Controlling FDR under dependency

In practice, test statistics are not
independent, e.g. spatial correlation

FDR robust under dependence
(Ventura et al., 2004; Wilks, 2006; Wilks, 2016)

— conservative for moderate to strong spatial
correlation

— account for temporal correlation by appropriate
local testing procedure

Several modifications to FDR under
dependence (e.g. Benjamini and Yekutieli, 2001)
- active research area

Modifications usually available in software
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Achieved FDR

e-folding distance, x 10° km Spatial correlation

Fic. 4. Achieved global test levels (probabilities of
rejecting true global null hypotheses) when using the
FDR procedure, as a function of spatial correlation
strength. For moderate and strong spatial correla-
tion, approximately correct results can be achieved
by choosing a . = Zug

Wilks (2016, mod.)
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How to apply False Discovery Rate (FDR) procedure?

- FDR is easy to use:
Input: provide vector of p-values and q (apz)
output: vector of adjusted p-values

— R:p.adjust (pvals,method="BH") # returns p.adj = %pi
— Matlab: £dr bh (pvals,q)

— Python: statsmodels.stats.multitest.multipletests (pvals,

alpha=0.05,method="£fdr bh")
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Conclusions

« preferable to control the proportion of errors (FDR) rather than the
probability of making one error (FWER)

« FDRis the best method available to analyse multiple hypothesis test
results

« valid for all kind of tests, even under dependence (e.g. spatial correlation).
(Wilks, 2016; Wilks, 2006; Ventura et al. 2004).

* modifications for FDR under dependency (e.g. Benjamini and Yekutieli, 2001)
— active research area

 |FDR ensures that no more than appr% of significant results will be false
positives instead of a% of all test results

Max-Planck-Institut
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