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Parallel Analysis with Dask

Ever wondered why your Python script is taking so long to finish?

Often in our daily work as researcher we process large amounts of data. The processing is usually
done using utilities like Python or NCL which are, by default, not parallelized. On the other hand
models used to produce the data that we analyse are obviously parallelized using libraries like
OpenMP or MPI. With the increasing volume of data produced by models it is becoming more and
more necessary to parallelise the processing part of data analysis. This can be easily done with
Python and the Dask (https://dask.org/) library.

Why Dask?

Dask parallelise the processing of data by (1) dividing the arrays into chunks, which can be defined
by the users, and (2) interfacing with the functions of numpy, pandas and scikit-learn which can
then operate over these chunks. Every operation is decomposed in many sub-operations which can
then be parallelised across different processors. For example in order to compute an average of an
array Dask will divide the array into chunks, compute the average over all the individual chunks and
then merge everything together. The interesting part of this process is that Dask can be adapted to
run either on your laptop or on a cluster where more processors are available. This means that
machines that have a limited amount of memory (for example a 'default' macbook used at MPI may
have about 8 GB of RAM) can still operate onto array which would not fit into memory since
operations are performed over chunks. In other words, you will be able to open files of e.g. 64 GB on a
machine that has 8 GB of RAM. For more information check out the official website https://dask.org/.

In this guide we will use Dask to process data of the simulations conducted over Germany in the
framework of the HD(CP)2 project. The idea is that we don't want to move/copy any file to compute
our final result, which will be just a time series of rain rate. But first of all we need to talk about the
configuration.

Configuration

When using Python on Mistral one is advised to use conda to manage the installed packages. This
page https://www.dkrz.de/up/systems/mistral/programming/python explains how to install conda and
create a virtual environment where all the packages are installed. Assuming that our environment is
called my_base to install all the necessary packages one needs to do

source activate my_base
conda install -c conda-forge dask xarray dask-jobqueue ipython pandas numpy
matplotlib
pip install dask-mpi

Note that we used pip to install dask-mpi since this is the only way to correctly link the
MPI library needed to launch a job using dask-mpi. Later it will become clear why this is
important.

https://dask.org/
https://dask.org/
https://www.dkrz.de/up/systems/mistral/programming/python
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You can use Dask either in ipython or in a jupyter notebook, which I find more convenient. DKRZ
created a nice script to launch a jupyter notebook on Mistral which can be found here
https://www.dkrz.de/up/systems/mistral/programming/jupyter-notebook. When working with Dask it is
advisable to reserve an explicit node on the shared partition so that any potential node for the
computation can be easily reached through the network. This can be done specifying the account that
need to be used for the allocation of the node:

chmod a+x start-jupyter
./start-jupyter -u m300382 -A bm0682

As documented on the DKRZ website this script will read some configuration from a
jupyter_preload file located in your home on Mistral. You should use that file to load your specific
virtual environment to make sure that the notebook will have all the packages that you installed. For
example

module unload anaconda2 anaconda3 netcdf_c python
module load anaconda2/bleeding_edge
export PATH=/work/mh0731/m300382/conda_envs/my_base/bin:$PATH
source /sw/rhel6-x64/conda/anaconda2-bleeding_edge/bin/activate my_base
export PYTHONNOUSERSITE=True

Unfortunately jupyterhub cannot be used at the moment with Dask as the necessary
packages cannot be installed in the default environment and a user defined environment
cannot be loaded in jupyterhub.

Main difference in the processing workflow

Dask employs lazy arrays. This is a fancy way of saying that array are never loaded into memory if
they are not needed for some computation or you don't tell Dask to load. This avoid to fill up the
memory of the machine and reduce waiting time for operations. This, however, means that most of
time the only informations that you can see on a dask array are its shape and type. You should avoid
as much as possible to load the array into memory and define all the operations that you want to
perform on an array before launching the actual computation. For example

import xarray as xr
dset = xr.open_dataset('dataset.nc', chunks={'time':10}) # This is opened
using dask
var3 = dset['var'] + dset['var2']
mean = var3.mean(axis=1)
mean = mean.compute()

In a normal Python session that does not use the option chunks={'time':10} the operations will
be evaluated in every row, and the last one won't make any sense. When using dask, instead, no
operation is performed until the command mean.compute() is evaluated.
To start the computation usually you should use the .compute() or .persist() methods. The

https://www.dkrz.de/up/systems/mistral/programming/jupyter-notebook
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second one keep the result into memory (handy!) and gives you back the control of the python shell,
so it is advisable to use. To load the data into memory you can instead use the .values or .load()
attribute and method, respectively.

Using a distributed scheduler in Dask on Mistral

Dask is loaded automatically when using xarray so that maybe some of your computations were
already done using it without you noticing. In fact Dask can automatically detect the machine
computation capabilities and act accordingly. However, in our case we want to be able to use Dask
with a distributed configuration. In simple words Dask will do computations using a scheduler, that is
a process that take care of organising the work of many workers which in a cluster architecture are
usually equivalent to the nodes. Scheduler and workers can be started on Mistral using different
strategies.
The first, easiest one, employs dask-jobqueue.

from dask_jobqueue import SLURMCluster
cluster = SLURMCluster(queue='compute2', cores=36, memory='64 GB',
                       project='bm0682',
walltime='02:00:00',local_directory='/work/mh0731/m300382/dask/',
                      job_extra=['-o
/work/mh0731/m300382/dask/LOG_worker_%j.o',
                                 '-e
/work/mh0731/m300382/dask/LOG_worker_%j.o'])

What SLURMCluster does is to prepare many scripts which are then submitted automatically to the
machine to reserve as many nodes as you want. You can check what the script looks like doing
print(cluster.job_script()). To reserve 4 nodes you just have to scale the cluster and
connect Dask to it

cluster.scale(4)
 
from dask.distributed import Client
client = Client(cluster)

What is amazing in this is that the distributed part of Dask can balance the load depending on how
many nodes you have available, which you can easily change even afterwards by scaling again the
cluster cluster.scale(8). The drawback is that one job has to be submitted per node, which may
be problematic depending on the resources of your group.

Remember to launch the jupyter notebook using the -A option so that you reserved a
node on the machine otherwise the notebook won't be able to connect to the workers as
mistralpp is not in the same network.

For this reason the jobs can be launched manually using dask-mpi, which is the second method
displayed here. In order to do that you can use the following bash script:
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launch_dask_distributed.sh

#!/bin/bash
#======================================================================
=======
# =====================================
# mistral batch job parameters
#----------------------------------------------------------------------
-------
#SBATCH --account=bm0682
#SBATCH --job-name=dask
#SBATCH --partition=compute2
#SBATCH --workdir=/work/mh0731/m300382/dask
#SBATCH --output=/work/mh0731/m300382/dask/LOG_dask.%j.o
#SBATCH --error=/work/mh0731/m300382/dask/LOG_dask.%j.o
#SBATCH --exclusive
#SBATCH --time=02:00:00
#SBATCH --cpus-per-task=72
#SBATCH --mem=60G
 
rm -r worker-*
rm scheduler.json
rm global.lock
rm purge.lock
 
ulimit -c 0
 
# Environment settings to run a MPI parallel program
# compiled with OpenMPI and Mellanox HPC-X toolkit
# Load environment
module purge
module load defaults
module load intel/17.0.6
module load openmpi/2.0.2p2_hpcx-intel14
module list
# Settings for OpenMPI and MXM (MellanoX Messaging)
# library
export OMPI_MCA_pml=cm
export OMPI_MCA_mtl=mxm
export OMPI_MCA_mtl_mxm_np=0
export MXM_RDMA_PORTS=mlx5_0:1
export MXM_LOG_LEVEL=ERROR
# Disable GHC algorithm for collective communication
export OMPI_MCA_coll=^ghc
 
srun -l --cpu_bind=threads --distribution=block:cyclic --
propagate=STACK /work/mh0731/m300382/conda_envs/my_base/bin/dask-mpi --
no-nanny

https://wiki.mpimet.mpg.de/doku.php?do=export_code&id=analysis:pot_pourri:sapphire:dask_parallel_postprocessing&codeblock=6
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just make sure to create a folder, in my case /work/mh0731/m300382/dask, where all the log and
temporary files are store, and then launch the script as you would do sbatch -N number_nodes
launch_dask_distributed.sh. dask-mpi will use MPI library just to communicate with the
nodes and start many workers and a scheduler which are then connected together. Once everything
is running smoothly you should connect to the scheduler using this simple snippet in your notebook

import json
data=[]
with open('/work/mh0731/m300382/dask/scheduler.json') as f:
    data = json.load(f)
scheduler_address=data['address']
 
from dask.distributed import Client
client = Client(scheduler_address)

Using this method only one job will be launched on the machine and you'll be more flexible in
choosing a larger number of nodes.
Regardless of which method you use in the end you'll have a client object which Dask will use to
distribute the computation. Once the client is started you can use the dashboard to check the status
of your cluster and of the computation that you'll eventually launch. This can be usually reached on
localhost:8787 (8787 is the default port but it may vary) on your browser but since the scheduler
lies on Mistral we have to make a ssh tunnel to make sure that this is locally accessible. Luckily this is
quite easy:

ssh -N -L 8787:$1:8787 m300382@mistralpp.dkrz.de

where $1 is the address of your scheduler which will be printed if you just do client. It should be
something like 10.50.40.17. If the address is ok when you type in your browser
http://localhost:8787 you should get something like this.

More info on how to use the dashboard can be found here
http://docs.dask.org/en/latest/diagnostics-distributed.html.

https://wiki.mpimet.mpg.de/lib/exe/detail.php?id=analysis%3Apot_pourri%3Asapphire%3Adask_parallel_postprocessing&media=analysis:screenshot_2019-03-05_at_14.23.49.png
http://docs.dask.org/en/latest/diagnostics-distributed.html
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Usage example

The example can be found on Mistral at
/work/mh0731/m300382/dask/dask_example.ipynb (although it will probably be
moved in the future).

Now that we have everything sorted out we can use the distributed computation to compute the
average of rain rate over the entire domain of Germany for one of the days simulated
(https://code.mpimet.mpg.de/projects/icon-lem/wiki/HDCP2_DE). We start by listing all the files that
we need

import numpy as np
from glob import glob
import matplotlib.pyplot as plt
import xarray as xr
import dask.array as da
import pandas as pd
 
main_folder='/work/bm0834/k203095/ICON_LEM_DE/'
file_prefix='2d_cloud_day'
domain='DOM01'
 
folders=['20160529-default']
variable='rain_gsp_rate'
 
filenames=[]
for folder in folders:
filenames=filenames+(sorted(glob(main_folder+folder+'/DATA/'+file_prefix+'_'
+domain+'*')))

And then read the single file and concatenate all together

temps=[xr.open_dataset(fn)[variable] for fn in filenames]
arrays=[da.from_array(t, chunks=(chunk_time, chunk_space)) for t in temps]
var=da.concatenate(arrays, axis=0)

Note again that until now we didn't perform any computation but just told Dask where the data
should be found and what are the dimensions of the chunks. Just take one moment to appreciate how
flexible and lightweight this is. Data may be scattered in different folders over the machine and
without copying them we're just able to merge them and do computation, which will be parallelized
automatically depending on how the data is organized.

We can start the computation by doing

mean = var.mean(axis=1).persist()

If you look into the dashboard you'll see all the chunks being processed, something like this.

https://code.mpimet.mpg.de/projects/icon-lem/wiki/HDCP2_DE
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Once the computation is done you can save the result by loading into memory

mean = mean.compute()
 
array([2.4039342e-05, 2.3902332e-05, 2.3811526e-05, ..., 9.9697572e-05,
       9.9602083e-05, 9.9465833e-05], dtype=float32)

which we can then easily plot.

plt.figure(figsize=(12, 8))
time=pd.date_range(start='2016-05-29 06:00:00', end='2016-05-30 00:00:00',
periods=var.shape[0])
plt.plot(time, mean, label='DOM01')
plt.legend()
plt.show()

Instead of using dask.array we can merge the datasets using xarray directly but specifying the
chunks size when loading the dataset. This should work most of the time and it is more flexible but
fails if the input files are too large.

temps=[xr.open_dataset(fn, chunks={'time':50}) for fn in filenames]
dset = xr.concat(temps, dim='time')
dset[variable].mean(axis=1).compute()

Caveats/problems/suggestions

https://wiki.mpimet.mpg.de/lib/exe/fetch.php?cache=&media=analysis:dashboard.mp4
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The first and most important:

Dask is not always the answer. If your data fits into memory loading and processing the
data with Dask will make everything slower. This is because when the dataset is not big
the advantage of processing every chunk separately is overcomed by the intrinsic limited
speed of transmitting the results of the computation between the workers. This is nothing
new and the same problem that is encountered in parallel computation, the so-called
scaling. So, as always, think before computing and processing!

xr.open_mfdataset can be used in place of xr.open_dataset to open multiple files BUT in this
case every file will be loaded as single chunk with Dask. Thus the merged array will not be processed
as one and the memory could get filled if the files are large. We do not advise to use this method.

Progress of a computation can be tracked also without the dashboard using the progress class of
dask.distributed

Dask distributed can be run also on your laptop using the class LocalCluster.

GRIB files can be opened with xarray when cfgrib (https://github.com/ecmwf/cfgrib) is installed.
Unfortunately GRIB files still remain GRIB files so they're not really flexible. So in theory you can use
the method shown before also with grib files, but it will not always work. More importantly DYAMOND
files are written in a compressed GRIB2 format. Luckily the eccodes library shipped with conda-
forge comes with the de-compression library installed but it will still hinder the performance of
reading the files. So you may want to convert them to netcdf before analysing it. I know, it sounds
stupid but it works.

For a xarray-native workaround to the above issue with grib1 output and CDO
stream.codes files (found in exp_id/log), open grb files with
xr.open_mfdataset(engine=“cfgrib”), and rename variables based on
pd.read_fwf(stream.codes, sep=“\t”, header=None,
names=[“param”,“nlev”,“varname”,“some1”,“some2”,“long_name_unit”],
index_col=0) looping over variables v and renaming based on
ds[v].attrs['GRIB_paramId'] as demonstrated in
https://gist.github.com/aaronspring/bf5139a718bbd607dcb95a5222a9d0e8.
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