
2024/12/06 19:37 1/6 Reserve and Use

MPI Wiki - https://wiki.mpimet.mpg.de/

Reserve and Use

This method uses Dask to make the distribution easier. There are three basic scripts here. Two bash
scripts reserve computing resources in MISTRAL, and the main script contains the parallelised code.
The mind behind this method is Pavan Siligam from DKRZ.

Search
Search only in this Namespaces below. For a global search, use the field in the upper right corner.
More tips: how_to_use_the_wikisearch

Scheduler

The first script initialises a process that manages the resources. You initialise the job in MISTRAL with
a script similar to the next template.

launch_scheduler_test.sh

#!/bin/bash
#SBATCH --account=yy0000
#SBATCH --job-name=dask-scheduler-test
#SBATCH --workdir=/scratch/x/x000000/dask-work/test
#SBATCH --output=/scratch/x/x000000/dask-work/test/LOG_dask.%j.o
#SBATCH --error=/scratch/x/x000000/dask-work/test/LOG_dask.%j.o
#SBATCH --time=08:00:00
#SBATCH --partition=yyy
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1

module purge
export PATH=/work/yy0000/x000000/miniconda3/bin:$PATH
conda activate glamdring

srun dask-scheduler --scheduler-file /scratch/x/x000000/dask-
work/test/scheduler_test.json

The line before the srun command adds the binaries of a base miniconda distribution to the front of
the path and then loads a given conda environment (here named glamdring). If you are not using a
custom miniconda distribution, you should use the necessary module invocations, or any other
code, and set the proper environment. The srun command executes the dask-scheduler script to
create the scheduler node and stores its location in the file given after the option –scheduler-file.
To run the script, you only need to issue.

sbatch launch_scheduler_test.sh

NB: You should create manually in your scratch space the directory dask-work. This is where all
the logs will be stored. I strongly recommend that inside dask-work you further create a directory for

https://wiki.mpimet.mpg.de/doku.php?id=wiki:how_to_use_the_wikisearch
https://wiki.mpimet.mpg.de/doku.php?do=export_code&id=analysis:pot_pourri:general_computing:method_1&codeblock=0

Last
update:
2020/09/22
17:43

analysis:pot_pourri:general_computing:method_1 https://wiki.mpimet.mpg.de/doku.php?id=analysis:pot_pourri:general_computing:method_1

https://wiki.mpimet.mpg.de/ Printed on 2024/12/06 19:37

each project, such as test directory. Having this structure will allow you to better debug any
problems with your scripts.

Workers

The second script initialises several processes called workers. As the name suggests, they are the
processes that execute the tasks effectively.

launch_workers_test.sh

#!/bin/bash
#SBATCH --account=yy0000
#SBATCH --job-name=dask-worker-test
#SBATCH --workdir=/scratch/x/x000000/dask-work/test
#SBATCH --output=/scratch/x/x000000/dask-work/test/LOG_dask.%j.o
#SBATCH --error=/scratch/x/x000000/dask-work/test/LOG_dask.%j.o
#SBATCH --time=00:05:00
#SBATCH --partition=compute2
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=1

module purge
export PATH=/work/yy0000/x000000/miniconda3/bin:$PATH
conda activate glamdring

srun dask-worker --scheduler-file /scratch/x/x000000/dask-
work/test/scheduler_test.json

In analogy to the scheduler case, the lines before the srun command should be used to set the
proper environment for the workers. Now, the srun command executes the dask-worker script to
create the worker processes. The option –scheduler-file gives the path to the scheduler file
created with the successful execution of the first script. The result is that all the worker processes
connect to the scheduler node.

The importance of this script is not in the srun command but in the environment and the SBATCH
preamble. How you set the environment arranges the available software and the Python version in
each worker. The SBATCH preamble will determine the resources that you reserve and how do you
assign them to the workers. In this case, I reserve eight nodes in compute2 partition for five minutes
(40 node-minutes), with a worker running in each node. SBATCH parameters allow for a more detailed
request. Even you can make a script for each worker with different resources. Here is a more
advanced topic. Someone else can comment on it and show a minimal working example. Once the
launch_scheduler_test.sh is running in MISTRAL, you can request to set up the workers by
issuing.

sbatch launch_workers_test.sh

When they are running in the cluster, you can use the resources in your Python script. Just read the

https://wiki.mpimet.mpg.de/doku.php?do=export_code&id=analysis:pot_pourri:general_computing:method_1&codeblock=2

2024/12/06 19:37 3/6 Reserve and Use

MPI Wiki - https://wiki.mpimet.mpg.de/

next sections.

Accessing the resources from within the Python script

Apart from other packages, you should import the Client class from the dask.distributed
module and the subprocess module.

import subprocess as sp
from dask.distributed import Client

With the Client class you can initialise a connection to the scheduler and make available the
reserved resources with the following lines. The subprocess module allows you to kill the processes
in the cluster once we ended our calculations, in case you overestimated the reserved time. The exact
code to connect to the resources is

client=Client(scheduler_file='/scratch/x/x000000/dask-
work/test/scheduler_test.json')
print(client)

The second line prints some information about the scheduler and the workers, as well as the total
reserved memory. Now, your script has access to the resources. The next step is to run your desired
code.

Sample Python script

I present a minimal working example to show what is the methodology to parallelise. The problem is
the matrix multiplication of a matrix A with eight columns and eight rows and a column vector v with
eight components. We want to compute Av

For the sake of the example, we use a random matrix. I assume that numpy package has been
imported.

A=np.random.rand(8,8)
v=np.array([1,1,2,3,5,8,13,21])

Matrix multiplication will result in another column vector of eight elements, that come from the “dot
product” of each row of the matrix with the vector v. Then each “dot product” can be done at the
same time, that is, in parallel. In other words, we can calculate each of the eight components of the
result independently of any of the other components. The elemental calculation for the first
component of the result will be

first_component=A[0]*v
first_component=first_component.sum()

Where I used the operator * which multiplies the vectors component-wise. If I would not have that
operator, then the elemental process should be

first_component=0

Last
update:
2020/09/22
17:43

analysis:pot_pourri:general_computing:method_1 https://wiki.mpimet.mpg.de/doku.php?id=analysis:pot_pourri:general_computing:method_1

https://wiki.mpimet.mpg.de/ Printed on 2024/12/06 19:37

for j in range(v.size):
 first_component+=A[0,j]*v[j]

For-loops are slow. Then the real elemental process is the multiplication of components. Then we
define a helper function.

def first_multip(j):
 return A[0,j]*v[j]

or, in a general setting

def multip(mat_elem,vec_elem):
 return mat_elem*vec_elem

Then the elemental process will be: multiply every element of the matrix by the corresponding
component of the vector and then sum over rows to get the eight components of the result.

def multip(mat_elem,vec_elem):
 return mat_elem*vec_elem

task_multiply_sum=[client.submit(sum,[client.submit(multip,A[i,j],v[j])
for j in range(A.shape[1])]) for i in range(A.shape[0])]

result=np.array([task_multiply_sum[i].result() for i in range(A.shape[0])])

Here the code has two lines. First, in the task_multiply_sum variable, I send the elemental
calculations to the cluster with the help of the submit method. This method has as first argument the
name of the function to be applied. The following arguments are the arguments for the function. Then
I say to the scheduler that, when the results of a row are ready, it should sum all of them (submit
method with the function sum). Everything is done in the cluster workers and not in the script
namespace. The second line gathers the final results from the cluster by issuing the result method
on each component of the task_multiply_sum list.

Once the computation concludes, I disconnect from the cluster and confirm this by printing the client
information

client.close()
print(client)

and then, with the following code, you can kill the processes in the cluster

command=["scancel","-u","m300556","--name","dask-workers-test"]
sp.run(command,check=True) # First kill workers
command=["scancel","-u","m300556","--name","dask-scheduler-test"]
sp.run(command,check=True) # Then the scheduler

We can check the result of the multiplication with the following lines

alt_result=np.dot(A,v)

2024/12/06 19:37 5/6 Reserve and Use

MPI Wiki - https://wiki.mpimet.mpg.de/

print(result==alt_result)
print(result)
print(alt_result)

the first line makes the multiplication directly, the second checks the results element-wise. In the last
two lines, I print out both resulting vectors. NB: In my tests, I found that the element-wise comparison
shows that some vector components are different. When you inspect them visually in the printouts,
the elements are equal in both vectors, but when you look at the full representations of the numbers,
you can see that some digits are different at the end of the numbers (Perhaps it is a consequence of
how numpy operates on floats).

The advantage in speed of this MWE is not evident since the problem is not large enough. With larger
matrix dimensions we should see the difference. But for other tasks, the performance improvement
should be apparent (as in the postprocessing of experiment output).

The code for the MWE is

matrix_multiplication.py

import numpy as np
import subprocess as sp
from dask.distributed import Client

0. Preparation

client=Client(scheduler_file=('/scratch/m/m300556/dask-work/test'+
 '/scheduler_test.json'))
Connect to the reserved resources.
print(client)
Print out information about the resources.

A=np.random.rand(8,8)
Define the matrix and the vector.
v=np.array([1,1,2,3,5,8,13,21])

def multip(mat_elem,vec_elem):
Helper function.
 return mat_elem*vec_elem

1. Parallel calculation

task_multiply_sum=[client.submit(sum,[
client.submit(multip,A[i,j],v[j]) for j in range(A.shape[1])]) for i
in range(A.shape[0])]

result=np.array([task_multiply_sum[i].result() for i in
range(A.shape[0])]) # This gathers the results.

2. Disconnection from the cluster resources

client.close()

https://wiki.mpimet.mpg.de/doku.php?do=export_code&id=analysis:pot_pourri:general_computing:method_1&codeblock=15

Last
update:
2020/09/22
17:43

analysis:pot_pourri:general_computing:method_1 https://wiki.mpimet.mpg.de/doku.php?id=analysis:pot_pourri:general_computing:method_1

https://wiki.mpimet.mpg.de/ Printed on 2024/12/06 19:37

Disconnect the scheduler.
print(client)
Shows information to verify the disconnection.

command=["scancel","-u","m300556","--name","dask-workers-test"]
sp.run(command,check=True)
First kill workers
command=["scancel","-u","m300556","--name","dask-scheduler-test"]
sp.run(command,check=True)
Then the scheduler

3. Check the results against an established library

alt_result=np.dot(A,v)
Use np.dot to perform the matrix multiplication.
print(result==alt_result)
Print comparison.
print(result)
Print out both vectors.
print(alt_result)

NB: The method also works for jupyter notebooks without any issue.

From:
https://wiki.mpimet.mpg.de/ - MPI Wiki

Permanent link:
https://wiki.mpimet.mpg.de/doku.php?id=analysis:pot_pourri:general_computing:method_1

Last update: 2020/09/22 17:43

https://wiki.mpimet.mpg.de/
https://wiki.mpimet.mpg.de/doku.php?id=analysis:pot_pourri:general_computing:method_1

	[Reserve and Use]
	Reserve and Use
	Scheduler
	Workers
	Accessing the resources from within the Python script
	Sample Python script

